
Journal of Computational Physics 182, 91–117 (2002)
doi:10.1006/jcph.2002.7153

FINESSE: Axisymmetric MHD Equilibria
with Flow
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The FINESSE code (finite element solver for stationary equilibria) computes ax-
isymmetric magnetohydrodynamic equilibria in poloidal elliptic flow regimes for a
variety of astrophysical and laboratory plasma configurations. The obtained equi-
libria are accurate and are used to study the spectral characteristics of such flowing
equilibria. The nonlinear partial differential equation for the poloidal magnetic flux
is solved in a weak form via Picard iteration, resulting in a large-scale linear problem.
The algebraic Bernoulli equation for the poloidal Alfvén Mach number is solved with
a nonlinear root finder. Converged solutions are obtained by iterating on these two
equations. c© 2002 Elsevier Science (USA)
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1. INTRODUCTION

For many years the spectrum of waves and instabilities of tokamak fusion plasmas has
been studied successfully for static, nonrotating plasmas resulting in optimally shaped
plasma cross sections and profiles for fusion operation. However, it has been realized that
in present-day tokamaks the notion of static plasmas has to be given up due to common use
of neutral beam heating and divertor pumping resulting in substantial toroidal and poloidal
plasma rotation.

In astrophysics, the need for the mentioned paradigm shift never occurred; astrophysical
plasmas have always been observed as flowing. Nevertheless, stability and wave analysis
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of astrophysical plasmas has been performed for static plasmas. On the one hand this is
probably due to the success of similar studies in static thermonuclear fusion plasmas, but
on the other hand it is likely due to the extreme difficulty in getting meaningful analytic or
accurate numerical solutions for flowing plasmas. Such accurate solutions are required to
obtain pollution-free spectra and correct stability boundaries.

Magnetohydrodynamic (MHD) equilibria with flow can be, and currently are, obtained by
numerical relaxation of the full set of hyperbolic MHD equations toward a stationary state
(see, for example, Refs. [14, 17, 20]). However, such computed equilibria generally lack
the accuracy to be used as input for spectral studies. Moreover, there is a highly restricted
flexibility in determining a priori the kind of solutions that are produced. The advantage
of this method is that transonic solutions can easily be obtained (provided the exploited
algorithms are shock-capturing).

In this paper we present an algorithm for the solution of the equations governing stationary
axisymmetric MHD equilibria that results in very accurate solutions that can be used as
starting points for spectral studies. This is far from a trivial extension of the static case. First,
there is an additional nonlinear scalar equation, the equivalent of the Bernoulli equation
appearing in hydrodynamic flow problems, that determines the density (or poloidal Alfvén
Mach number). The nonlinearity of this equation results in four different solution branches:
subslow, slow, fast, and superfast. Second, the nonlinear partial differential equation for
the poloidal magnetic flux can be either elliptic or hyperbolic, depending on the poloidal
Alfvén Mach number.

As far as we know, the first method for the numerical solution of axisymmetric equilibria in
elliptic flow regimes was presented and implemented by Żelazny et al. [22] for tokamak plas-
mas. They solved the equilibrium problem by the inverse method and subsequent spectral
representation. This involved rewriting and solving the governing equations in flux coordi-
nates instead of using a direct (R, Z ) coordinate system. In this paper we present a numerical
method based on the direct application of a Galerkin method to solve the partial differential
flux equation in combination with nonlinear root finding for the Bernoulli equation. We
use isoparametric bicubic Hermite finite elements to discretize the nonlinear partial differ-
ential equation, since this has been shown to be quite effective in the equilibrium–spectral
code combinations HELENA–CASTOR [12, 13, 15] and CHEASE–MARS [5, 16, 21]
for the static case. It permits easy adaptation to different poloidal cross-section geometries
and yields quartic convergence behavior that results in accurate solutions already for modest
grid resolutions. At the same time, we allow for the presence of an external gravitational
field, so that we can generate astrophysically relevant stationary MHD solutions.

This paper is set up as follows. In Section 2, the basic equations of axisymmetric ideal
magnetohydrodynamic equilibria with flow are presented and reduced to a core problem in
terms of the poloidal magnetic flux function, the squared poloidal Alfvén Mach number,
and five arbitrary flux functions. In Section 3, we present and discuss the algorithm to solve
the core problem. In Section 4, results are shown for different flow regimes and for different
applications to show the abilities of the implemented algorithm. Finally, in Section 5 we
draw conclusions.

2. BASIC EQUATIONS AND CORE PROBLEM

In the formulation of the core problem of axisymmetric equilibria with flow, we closely
follow the notation and definitions as used by Goedbloed and Lifschitz in their studies of
translation symmetric [7] and axisymmetric [9] systems.
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The basic equations governing stationary, ideal MHD equilibria are obtained by setting
the partial time derivative to zero in the full set of ideal MHD equations. This results in the
set of equalities

∇ · (�v) = 0, (1a)

�∇
(

1

2
v2 + �

� − 1
��−1S + �grav

)
− 1

� − 1
��∇S − �v × � − J × B = 0, (1b)

v · ∇S = 0, (1c)

∇ × (v × B) = 0, (1d)

∇ · B = 0, (1e)

which have to hold for the density � , velocity v, entropy S, and magnetic field B. In the
force balance equation (1b), � ≡ ∇ × v is the vorticity, and J ≡ ∇ × B is the electric current
density (adopting units where the permeability of vacuum �0 = 1). The kinetic pressure p
is related to the density and entropy by p ≡ S�� , where � is the ratio of specific heats of
the plasma. The term �grav in the force balance equation (1b) represents the potential of an
external gravitational source. Inclusion of this term allows us to study, for example, stellar
winds and flows in accretion disks.

The condition of axisymmetry naturally leads to the exploitation of a cylindrical, right-
handed coordinate system (R, Z ,�). With this choice the divergence-free conditions (1a)
and (1e) allow one to write the poloidal components of the velocity and magnetic field in
terms of a poloidal stream function � and a poloidal magnetic flux function � , viz.,

v = 1

� R
e� × ∇� + v�e�, (2a)

B = 1

R
e� × ∇� + B�e�. (2b)

When substituted into Eq. (1d), the poloidal component shows that

� = � (�), (3a)

whereas the toroidal component results in

� ≡ 1

R

(
v� − � ′ B�

�

)
= �(�). (3b)

Similarly, Eq. (1c) yields

S = S(�), (3c)

and the toroidal component of the force balance equation (1b) leads to

I ≡ RB� − � ′ Rv� = I (�). (3d)

The component of the force balance equation parallel to the magnetic field results in the
definition of another magnetic flux function, i.e., the Bernoulli function [9, 10]:



94 BELIËN ET AL.

H ≡ � ′2

2� 2

( |∇�|2
R2

+ B2
�

)
− 1

2
R2�2 + �

� − 1
��−1S + �grav = H (�). (3e)

Finally, the ∇� component of the force balance equation (1b) results in a partial differential
equation for the poloidal magnetic flux, viz.,

∇ ·
[

1 − � ′2/�

R2
∇�

]
+

(
� ′

� R2
+v� B�

)
� ′′ + � H ′ − 1

� − 1
�� S′ + B�

R
I ′ + � Rv��′ = 0,

(4)

where ′ ≡ d/d� . In what follows, we will assume that the gravitational force corresponds
to a point source of mass Mgrav at the origin, hence

�grav ≡ −G Mgrav√
R2 + Z2

= −G Mgravg(R, Z ), (5)

where the spatial dependence of the gravitational potential is denoted by g(R, Z ) and G is
the gravitational constant.

The core problem of finding stationary axisymmetric MHD equilibria then boils down
to specifying the five flux functions, � , �, S, I , H , and solving for � and � from Eqs. (3e)
and (4) subject to boundary conditions.

As shown by Goedbloed and Lifschitz [7, 9], exploiting the poloidal Alfvén Mach number,

M2 ≡ �v2
p

B2
p

= � ′2

�
, (6)

instead of the density � , and using

�1 ≡ � ′2 H, �2 ≡ �

� − 1
� ′2� S, �3 ≡ 1

2
� ′2�2, (7a)

�4 ≡ − I

� ′�
, �5 ≡ � ′2G Mgrav, (7b)

instead of the original flux functions, the core problem can be rewritten as

∇ ·
(

1 − M2

R2

)
∇� = − 1

M2

∂
1

∂�
+ 1

� M2�

∂
2

∂�
− 1

1 − M2

∂
3

∂�
, (8a)

|∇�|2
2R2

= 
1

M4
− 
2

M2(�+1)
− 
3

(1 − M2)2
, (8b)

where the three generic profiles 
i (i = 1, 2, 3) are defined in terms of the five flux functions
�i (i = 1, . . . , 5) and an explicit dependence on the coordinates R and Z ,


1 = 
1(� ; R, Z ) ≡ �1(�) + R2�3(�) + �5(�)g(R, Z )

= M2

(
1

2
M2 B2 + �

� − 1
p

)
, (9a)
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2 = 
2(�) ≡ �2(�) = �

� − 1
pM2� , (9b)


3 = 
3(� ; R2) ≡ R2�3(�)

(
1 − �4(�)

R2

)2

= B2
�

2
(1 − M2)2. (9c)

Note that when the gravitational potential is neglected (Mgrav = 0) only four flux functions
are necessary to specify the problem. Hence, when a solution to Eqs. (8a) and (8b) is found,
one has in fact found a solution for a continuous set of original flux functions where one of the
functions � ′, �, S, I , or H can be specified freely. By using the �i flux functions, we easily
generate solutions with different density variations by prescribing the flux function � ′2.

The form of the core problem (8a) and (8b) in terms of the three generic functions 
i

is, besides being compact and esthetically pleasing, also very convenient and well suited
for numerical implementation because (i) the singular Alfvénic point M2 = 1 is clearly
separated, (ii) a smooth transition to translation symmetric solutions is possible [9], and
(iii) given a solution � , it makes it possible to view solutions of the Bernoulli equation
as functions of three variables only, M2 = M2(P, Q, �) (see below). A small drawback of
the use of this form of the core equations is that the case of vanishing poloidal flow now
requires a nontrivial limit, viz., limM2→0 
1/M2 = limM2→0 
2/M2� = � p/(� − 1).

The differential operator appearing in (8a) can be elliptic or hyperbolic depending on
the value of the squared poloidal Alfvén Mach number M2 [9, 10, 23]. In this paper,
we restrict ourselves to finding solutions in the elliptic flow regimes only. In this way
the complicated issues and difficulties with limiting line singularities [9] and boundary
conditions are avoided. Furthermore, our solution method is best suited to elliptic problems.

2.1. Poloidal Plasma Cross Sections and Boundary Conditions

In order to deal with a variety of astrophysical and laboratory plasmas, our FINite Element
Solver for Stationary Equilibria—FINESSE—has been designed to be very flexible with
respect to geometry specification. These geometries are characterized by their poloidal cross
sections. Three types of cross sections are currently implemented (see Fig. 1). Together with
the boundary conditions they make up three types of applications.

FIG. 1. The different types of poloidal cross sections as implemented in FINESSE. (a) A torus cross section
related to applications with nested closed magnetic flux surfaces like tokamak plasmas. (b) An annulus related
to stellar wind applications. (c) A flux tube with a predominantly longitudinal magnetic field related to coronal
loop applications. The length scale a, as indicated in each frame, is used to make all appearing length variables
dimensionless. The cross sections along the z-axis may have arbitrary shape.



96 BELIËN ET AL.

2.1.1. Nested Closed Flux Surfaces: Tokamak Plasmas or Toroidal Flux Tubes
in Accretion Disks

In this case (Fig. 1a), the boundary of the poloidal cross section (Rb, Zb) is described by

Rb(�) = R0 + arb(�) cos �, Zb(�) = arb(�) sin �, −	 ≤ � ≤ 	. (10)

The major radius of the torus is denoted by R0 and the minor radius by a. The inverse aspect
ratio 
 ≡ a/R0 is a geometric quantity measuring the ratio of those two radii. The quantity
� is a polar angle that is measured with respect to the geometric center of the cross section
(R0, 0). The function rb(�) describes the boundary. It is normalized to unity at � = 0 and
� = 	.

In this paper we deal with top-down symmetric cross sections: r (�) = r (−�). How-
ever, FINESSE is not limited to such cross sections. The top-down symmetric boundary is
specifically modeled as

Rb = R0 + a cos (� + T sin � − Q sin 2� ) , Zb = aE sin �, 0 ≤ � ≤ 2	, (11)

with

�(� ) = arctan

(
E

sin �

cos(� + T sin � − Q sin 2� )

)
(12)

and

rb(�(� )) =
√

cos2 [� + T sin � − Q sin 2� ] + E2 sin2 � . (13)

Here, E measures the ellipticity, T the triangularity, and Q the rectangularity of the cross
section.

The imposed boundary conditions are such that the boundary represents a flux surface,
i.e., � (Rb, Zb) = �a .

2.1.2. Open and Closed Magnetic Field Lines in a Spherical Annulus:
Stellar Wind Plasmas

A sketch of a typical cross section of this type is shown in Fig. 1b. The two curved “radial”
boundaries are represented as

Ra
b (�) = ara(�) cos �, Za

b (�) = ara(�) sin �, −	

2
≤ � ≤ 	

2
, (14)

Rb
b (�) = brb(�) cos �, Zb

b (�) = brb(�) sin �, −	

2
≤ � ≤ 	

2
, (15)

where a and b are the small and large “radius,” respectively. The angle � is measured with
respect to the R-axis. The functions ra and rb are unit profiles normalized to one at � = 0.

The boundary conditions imposed were chosen to model dipolar magnetic fields. On the
symmetry axis � = 0 is imposed, on the small radial boundary the flux is prescribed, and
on the large radial boundary either the flux or the normal derivative of the flux is prescribed.

A top-down symmetric case can be studied as well by considering the range 0 ≤ � ≤ 	/2
and imposing the boundary condition ∂�/∂ Z = 0 at � = 0, i.e., on the R-axis.



FINESSE AND AXISYMMETRIC EQUILIBRIA 97

2.1.3. Tubelike Geometry: Coronal Loop Plasmas

The last case models tubelike geometries with a predominantly longitudinal magnetic
field. A sketch is shown in Fig. 1c. The radial boundary is specified by

Rb(�) = ar(�), Zb(�) = Z (�) ≡ �
L

2	
, −	 ≤ � ≤ 	. (16)

For uniformity with the other geometries, the longitudinal coordinate Z is expressed in
terms of �. The function r (�) is normalized to unity at � = 0.

As is the case for the nested closed flux surfaces geometry, the radial boundary is consid-
ered a flux surface. Hence, the boundary condition is � (Rb, Zb) = �a . On the symmetry
axis the magnetic flux vanishes and on the two poloidal boundaries either the flux or the
normal derivative of the flux is imposed. This flexible setup of the boundary conditions
allows us to study many different loop equilibria, for example, with flux that has emerged
through the poloidal boundaries. For examples of (static) MHD equilibria in tube geometry,
see Beliën et al. [1].

2.2. Dimensionless Core Problem

Using a geometric length scale a, a typical density �0, and poloidal magnetic flux value
�a, all appearing quantities are made dimensionless. For the case of nested closed magnetic
flux surfaces (Fig. 1a), the scaling corresponds to the small radius, the density on the
magnetic axis, and the poloidal magnetic flux on the boundary. For the spherical annulus
case (Fig. 1b), they are related to the value of the small radius on the equator, to the density
on the small radial boundary on the symmetry axis, and to the poloidal magnetic flux at the
intersection of the small radial boundary with the equator. Finally, for the tubelike geometry
(Fig. 1c) they are related to the tube radius at the midplane (i.e., at � = 0), to the density
on axis at the midplane, and to the flux at the radial boundary.

For nested closed flux surfaces geometries, normalized dimensionless coordinates x and
y are then defined as

x ≡ R − R0

a
, y ≡ Z

a
, R̄(x) ≡ 
 R(x)

a
= 1 + 
x, (17a)

whereas for other geometries they are defined as

x ≡ R

a
, y ≡ Z

a
, R̄(x) ≡ x . (17b)

The normalized radial function R̄(x) is introduced as a means of making the core equations
uniform for all types of geometries implemented.

The dimensionless normalized poloidal magnetic flux is given by

�̄ = �̄ (x, y) ≡ �

�a
. (18)

The dimensionless core equations that have to be solved are then given by

∇̄ ·
(

1 − M2

R̄2(x)

)
∇̄�̄ = − 1

M2

∂
̄1

∂�̄
+ 1

� M2�

∂
̄2

∂�̄
− 1

1 − M2

∂
̄3

∂�̄
, (19a)

|∇̄�̄|2
2R̄2(x)

= 
̄1

M4
− 
̄2

M2(�+1)
− 
̄3

(1 − M2)2
, (19b)
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where ∇̄ ≡ (∂/∂x, ∂/∂y), and the dimensionless generic functions


̄1 ≡ �̄1(�̄) + R̄2(x)�̄3(�) + �̄5(�̄)ḡ(x, y) =
(

a4

� 2
a

)

−2
1, (20a)


̄2 ≡ �̄2(�̄) =
(

a4

� 2
a

)

−2
2, (20b)


̄3 ≡ R̄2(x)�̄3(�̄)

(
1 − �̄4(�̄)

R̄2 (x)

)2

=
(

a4

� 2
a

)

−2
3 (20c)

are expressed in terms of the dimensionless flux functions

�̄1(�̄) ≡
(

a4

� 2
a

)

−2�1(�), (21a)

�̄2(�̄) ≡
(

a4

� 2
a

)

−2�2(�), (21b)

�̄3(�̄) ≡
(

a6

� 2
a

)

−4�3(�), (21c)

�̄4(�̄) ≡
(

1

a2

)

2�4(�), (21d)

�̄5(�̄) ≡
(

a3

� 2
a

)

−1�5(�) (21e)

and the gravitational potential

ḡ(x, y) ≡ a
−1g(R, Z ). (21f )

The quantity 
 is the inverse aspect ratio, as mentioned in Section 2.1.1. for nested closed
flux surfaces geometries. It is equal to unity for the other geometries.

2.3. Amplitudes and Unit Profile Definitions

The amount of freedom in specifying the flux functions �̄i (i = 1, . . . , 5) is infinite and
we have to reduce it to a finite number for implementation in FINESSE.

The first step is to separate the degrees of freedom in amplitudes and unit profiles (as was
done in, e.g., [6]). We make a slight deviation in this procedure in the sense that, with the
exception of A4, we exploit amplitudes relative to A ≡ A1, viz.,

�̄1(�̄) = A�1(�̄), (22a)

�̄2(�̄) = AA2�2(�̄), (22b)

�̄3(�̄) = AA3�3(�̄), (22c)

�̄4(�̄) = 
−1 A4�4(�̄), (22d)

�̄5(�̄) = AA5�5(�̄). (22e)

The separation in terms of absolute and relative amplitudes is done for two reasons. First,
for nested closed flux surface geometries, the amplitude A, which can be factored out of the
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right-hand side of Eq. (19a), acts as an eigenvalue determined by the condition that �̄ = 0
on the magnetic axis. For the other geometries A remains a free parameter. Second, the Ai

can be related to physically relevant parameters. This second point is discussed in more
detail in the Appendix.

In the current implementation of FINESSE the unit profiles �i (�̄) (i = 1, . . . , 5) are
simply defined as fourth-order polynomials, viz.,

�i =
5∑

j=1

ci j �̄
j−1

, i = 1, . . . , 5. (23)

The polynomial coefficients, ci j , are constrained by max {�i (�̄)}5
i=1 = 1 and

min �1(�̄) > 0, min {�i (�̄)}i=2,3,5 ≥ 0, min �4(�̄) ≥ −1.

Note that we allow a sign reversal of the profile �4. Through the relation 1 − �4/R2 ∝
B�(1 − M2), this signals either a sign reversal in the toroidal magnetic field or a transition
from sub-Alfvénic to super-Alfvénic flow. The condition of strictly positive �1 is made for
convenience so that we are assured of at least one nonzero flux function with a definite
sign. The profile amplitudes are constrained by A > 0, and {Ai }i=2,3,5 ≥ 0 since all flux
functions except for �4 are necessarily positive by definition (Eqs. (7a) and (7b)).

From now on we work with dimensionless quantities only and will omit the corresponding
bars for convenience.

3. SOLUTION METHOD

Our solution method is guided by the desire to have very accurate solutions that can
be used as a starting point for spectral studies. In the spectral formulation, first (magnetic
field) and second derivatives (current) of the poloidal magnetic flux appear as well as
first derivatives of the poloidal Alfvén Mach number. Since these quantities appear in the
potential energy, the accuracy of the potential energy is determined by their accuracies.
From spectral studies of static tokamak equilibria it is known that stability of so-called
m = 1 internal kink perturbations is governed by an expansion of the potential energy to
at least fourth-order in the inverse-aspect ratio, 
. Therefore, for a correct prediction of
(in)stability, the accuracy of the equilibrium quantities has to be such that the potential
energy can (in principle) be accurately computed to at least fourth order in the inverse-
aspect ratio. This is just a minimal requirement coming from static analysis. For flowing
plasmas accuracy requirements might turn out to be even stricter. Typical tokamak aspect
ratios of the order 
 ∼ 0.1 indicate that the computed equilibrium quantities should have
relative accuracies better than 10−4. Since the convergence of the discretization errors in
∇� and ∇2� is generally one and two orders less than for � , it indicates that the errors in
� itself should not exceed 10−7.

Based on the success of the isoparametric bicubic Hermite finite element approach in
accurately solving the Grad–Shafranov equation for the static tokamak case and the subse-
quent transformation to a flux coordinate solution for use in spectral codes (e.g, [12, 13, 15]
and [5, 16, 21]), we have opted for a similar approach.

The outer iteration solves for M2
i from Eq. (19b) for a given converged value � ;i from

the inner iteration. The inner loop uses a simple but effective Picard iteration to find � ;i
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from Eq. (19a) for a given M2
i−1,

∇ 1 − M2
i−1

R2
∇� j+1;i = −A�

(
� j ;i , M2

i−1; x, y
)
, (24)

where the subscripts i and j denote the outer and inner iteration stages, respectively. The
poloidal flux � ;i denotes the converged solution of the inner Picard iteration corresponding
to the ith outer iteration stage. The function � is used here as a short notation of the right-hand
side of Eq. (19a) normalized to the amplitude, A, of the first flux function �1.

3.1. The Generalized Flux Equation

The linear elliptic partial differential equation (24) for � j+1;i is solved numerically with
a Galerkin method [19]. The procedure followed is the same as for the solution of the Grad–
Shafranov equation that occurs in the formulation of static equilibria [1, 12]. We outline it
briefly; details can be found in the above-mentioned references.

A function � (x, y) ∈ S (leaving out the subindices on �) is a weak form solution of
Eq. (24) when

∫
V

1 − M2

R2
∇� ∗ · ∇� dV = A

∫
V

� ∗� dV +
∫

∂V

1 − M2

R2
� ∗∇� · dS (25)

is true for all test functions � ∈ T . The function spaces S and T are the same and consist of
functions that have quadratically integrable second derivatives and that satisfy the essential
boundary conditions. The plasma volume is denoted V and the bounding surface ∂V . An
infinitesimal surface element is represented by dS.

Function space S(=T ) is approximated by a finite dimensional subspace Snr ×n p , of which
the bases are spanned by isoparametric bicubic Hermite finite elements covering the poloidal
plasma cross section. With bicubic Hermite finite element representations, both � and
∇� are continuous across cell boundaries, and convergence of the discretization error is
quartic. Isoparametric elements are exploited for their ability to align element cells with the
boundary of the physical domain [1, 12, 19]. Within a cell Vk (with subindex k denoting the
cell), the poloidal magnetic flux � (x, y) then has the isoparametric finite element represen-
tation

� (x(s, t), y(s, t)) =
4∑

l=1

4∑
i=1

Hi (s, t)� in(k,l) , (26)

where (s, t) ∈ [−1, 1] × [−1, 1] are the local isoparametric coordinates, the Cartesian co-
ordinates are (x(s, t), y(s, t)) ∈ Vk , the functions Hi are the bicubic Hermite elements, and
the coefficients � in(k,l) represent function values (i = 1), first derivatives ∂�/∂x and ∂�/∂y
(i = 2, 3), and mixed second derivatives ∂2�/∂x∂y (i = 4) at the four corners (subindex l)
of a cell (subindex k). The subindex n = n(k, l) denotes the index number of node l of cell
k in the list of all nodes.

The discretization of the computational domain is achieved by defining a global “radial”
and poloidal coordinate grid in which the boundaries are represented by lines of constant r
or � and by expressing x and y in terms of these coordinates. Nodes (ri , �j ) are constructed



FINESSE AND AXISYMMETRIC EQUILIBRIA 101

by means of monotonic functions of evenly spaced variables (ui , v j ), viz.,

ri = r (ui ), ui = i − 1

nr − 1
, i = 1, . . . , nr (27a)

and

�j = �(v j ), v j = j − 1

n p − 1
, j = 1, . . . , n p. (27b)

In terms of (x, y) coordinates the nodes of the finite element grid are then given by

(
xn(i, j), yn(i, j)

) = (x(ri , �j ), y(ri , �j )), i = 1, . . . , nr , j = 1, . . . , n p. (28)

By relating the local isoparametric coordinates s and t with the radial coordinates r and
�, respectively, the required isoparametric representation of x(s, t) and y(s, t) can be con-
structed for each cell.

The condition of a (discretized) weak form solution, Eq. (25), then leads to the matrix
problem

K · x( j+1) = b( j), (29)

where the components of x( j+1) are the coefficients � in and where the superscripts ( j + 1)
and ( j) refer to the Picard iteration stage.

The matrix K is symmetric and positive definite for M2 < 1 or negative definite for
M2 > 1, and of order 4nr n p. It has a banded structure with the bandwidth determined by
the node ordering of the grid. The implemented node ordering is such that the poloidal
directions run fastest and in sequential order. This results in a bandwidth of 4n p + 7 for
Dirichlet or Neumann poloidal boundary conditions and 8n p − 1 for periodic boundary
conditions. With a judicious nonsequential ordering of the nodes in the poloidal direction
this latter bandwidth can be reduced to 4n p + 11.

In the current implementation of FINESSE, Eq. (29) is solved by Cholesky decomposition
of the matrix K and back substitution. For the Picard iteration, the Cholesky decomposition
needs to be performed only once at the start.

3.2. The Bernoulli Equation

We solve the Bernoulli equation under the assumption that the poloidal magnetic flux �

is given as a function of the spatial coordinates x and y. This turns the Bernoulli equation
(19b) into a nonlinear algebraic equation for the poloidal Alfvén Mach number M2.

With the definitions

X ≡ 1

M2
(30)

and

P ≡ 
2


1
, Q ≡ 
3


1
, � ≡ |∇�|2

2R
1
, (31)
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we recast the problem of finding solutions of the Bernoulli equation into finding the roots
of B� (X ; P, Q, �) = 0, where

B� (X ; P, Q, �) ≡ X2 − P X�+1 − Q
X2

(X − 1)2 − �. (32)

This representation is concise and very convenient for analysis and numerical implementa-
tion.

In general, when certain solvability constraints are met (see below) by the parameters P ,
Q, and �, four real, nonnegative zeros of B can be found, viz.,

B� (X ; P, Q, �) = 0 ⇒ X = X0,1,2,3(P, Q, �; � ). (33)

From elementary algebra it follows that

0 ≡ Xb
0 ≤ X0 ≤ X1 ≤ Xb

1︸ ︷︷ ︸
fast

≤ 1 −
√

Q (34a)

and

1 +
√

Q ≤ Xb
2 ≤ X2 ≤ X3 ≤ Xb

3︸ ︷︷ ︸
slow

≤ P−1/(�−1), (34b)

where Xb
0,1,2,3 ≡ X0,1,2,3(P, Q, � = 0; � ) are the Bernoulli flow boundaries. The solutions

with X < 1 (X > 1) represent fast (slow)-flow solutions. When Q is nonzero a region
around the Alfvén point, XA ≡ 1, is inaccessible.

We will use a Van Wijngaarden–Dekker–Brent nonlinear root finder [18]. Roots have to
be bracketed for this root finder. Hence, we need to find a bracket between X0 and X1 and
one between X2 and X3. Fortunately, these brackets are easily available and are physically
significant. The fast X f and slow Xs hyperbolic transition points act like brackets. These
two transition points are given by the zeros of the function (see [7, 9])

V� (X ; P, Q) ≡ (X − 1)

(
1 − 1

2
(� + 1)P X�−1

)
+ Q

(X − 1)2 . (35)

For general solutions, i.e., � ≥ 0, the following orderings hold:

0 = Xb
0 ≤ X0 ≤ X f , X f ≤ X1 ≤ Xb

1 ≤ 1 −
√

Q, (36a)

1 +
√

Q ≤ Xb
2 ≤ X2 ≤ Xs, Xs ≤ X3 ≤ Xb

3 ≤ P−1/(�−1). (36b)

The lower and upper bounds are used as brackets in the nonlinear root-finding procedure.
As mentioned above, solvability conditions have to be met in order to have real solutions

of the Bernoulli equation. For the fast flow regime they are

Q ≤ 1 and � ≤ X2
f − P X�+1

f − Q
X2

f

(X f − 1)2
. (37a)
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FIG. 2. The Bernoulli boundary X b
0 (the plane X = 0) and X b

1 and the transition from ellipticity to hyperbolicity
X f for the fast-flow regime, as contour plots (left) and surface plots (right).

For the slow flow regime they are

P ≤ P†(Q) ≤ 1 and � ≤ X2
s − P X�+1

s − Q
X2

s

(Xs − 1)2 . (37b)

The definition of P†(Q) is somewhat involved. It can be found in Ref. [9]. In the same
reference, it is shown that the solution X0 corresponds to a fast hyperbolic stationary flow
state, X1 is in a fast elliptic flow regime, X2 corresponds to a slow elliptic flow region,
while X3 is slow hyperbolic when X3 ≤ Xc and subslow elliptic otherwise. The latter Xc

is defined by M2 = M2
c = � p/(� p + B2).

The Bernoulli boundaries Xb
0,1,2,3 and the fast and slow hyperbolic transition points X f

and Xs are fundamental functions of two variables, P and Q, with a parametric dependence
on the ratio of specific heats � as the only physical parameter entering. In Figs. 2 and 3

FIG. 3. The Bernoulli boundary X b
2 and X b

3 for the slow-flow regime, as contour plots (left) and surface plots
(right). The surfaces join at the curve P†(Q) depicted in the left panel.
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we plotted the Bernoulli boundaries taking � = 5/3. Figure 2 is relevant for the fast-flow
regime, since all possible fast solutions X1 are located between the two surfaces Xb

1 and X f .
Figure 3 is of interest for the slow-flow regime, showing the Bernoulli boundaries Xb

2 and
Xb

3. These surfaces collapse onto the curve P†(Q) depicted in the left panel. The hyperbolic
transition surface, Xs , is not shown since it is located very close to the Xb

3 surface and it
would render them indistinguishable.

3.3. Convergence Characteristics

In this section, we study the convergence properties of the numerical method. We inves-
tigate both the convergence toward a single solution via the inner and outer iteration loops
and the convergence of the finite element discretization errors.

The convergence of the solution in the inner and outer iteration loops is determined by
the max–norm of the iteration variations. The max–norm is defined by

‖ f ‖ = max
in=1,...,n

∣∣ f
(
xin , yin

)∣∣, (38)

where in runs over all nodes of the finite element grid.
In Figs. 4 and 5, the convergence history of the solution in the inner and outer iteration

loops is plotted for equilibrium Case T3 (left) and Case T4 (right) (see Table II). The
acceptance criterium for the inner (Picard) iteration is that the max–norm of the variation
is smaller than 10−8. As soon as this criterion is met, a new outer iteration is started that is
visible in Fig. 4 as a sudden jump. The acceptance criterium for the outer loop is that the
max–norms of the variations of both � and M2 are smaller than 10−8.

The following observations can be made from Figs. 4 and 5. First, the convergence of the
inner and outer iteration is exponential, as indicated by the nearly straight lines in the log-
linear plots. This is an excellent property of our numerical algorithm. Second, the number
of iterations necessary to obtain a converged inner solution decreases as the outer solutions

0 100 200 300 400
Ninner
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−6
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−4

10
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10
0

||ψj+1;i ψj;i||

FIG. 4. Convergence history of two solutions from Table II in the inner iteration loop with nr = n p = 17.
(Left panel) A typical slow-flow solution (Case T3). (Right panel) A fast elliptic solution (Case T4). The inner
iteration is accepted as converged when ‖� j+1;i − � j :i ‖ ≤ 10−8. Each jump indicates a new outer iteration stage.
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0 10 20 30 40
Nouter
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FIG. 5. Convergence history of two solutions in the outer iteration loop for the same slow-flow (left) and
fast-flow (right) solution as in Fig. 4. The outer iteration, and hence the final solution, is accepted as converged
when ‖� ;i+1 − � :i ‖ ≤ 10−8 and ‖M2

i+1 − M2
i ‖ ≤ 10−8.

get closer to convergence (e.g., from 21 in the first outer iteration to 1 in the last one for
Case T3). It should be noted that the overall convergence behavior of the method, as shown
in Figs. 4 and 5, is (almost) insensitive to the spatial resolution.

Computationally, the most expensive part of the solution algorithm is the Cholesky de-
composition of matrix K every time a new outer iteration is started. From Fig. 4 it is then
clear that the later stages in the outer iteration become relatively more and more expensive,
since the number of inner iterations reduces greatly. Therefore, the computational cost of
our method might be improved by the use of an iterative linear algebra solver and good
preconditioner, for example an LU-decomposition of the matrix K obtained at the start.
A hybrid method where an iterative linear algebra solver was switched on only when the

1 10 100
n (=nr=np)

10
−10
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10
−6

10
−4

10
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10
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(1/A129)dA/dNr

(1/a129)da/dNr

FIG. 6. (Left panel) The convergence rate of the discretization error of the eigenvalue An = A∞ + Cn−


and the value of an = a∞ + Dn−� (a = ∂2�/∂x2) at the magnetic axis for equilibrium (Case T3). The centered
difference of these quantities is plotted. The slopes at n = 65 are approximately −5 and −4, respectively, indicating

 = 4 and � = 3. (Right panel) Similarly for fast flow (Case T4), quartic convergence is visible by plotting
An − A101 for increasing n.
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TABLE I

CPU Timings for Cases T3 (on SGI Origin 200) and T4 (on SGI Octane2)

from Table II for Varying Spatial Resolutions

Case CPU n = nr = n p Time (s)

T3 270 Mhz IP27 MIPS R12000 5 8.626
9 12.878

17 43.438
33 212.223
65 1483.075

T4 360 Mhz IP30 MIPS R12000 7 3.957
13 6.282
25 19.611
51 143.544

101 871.050

number of inner iterations had dropped below some threshold might reduce costs even fur-
ther. Since the relative cost of the nonlinear root-finding procedure to solve the Bernoulli
equation will increase for these methods, the use of database interpolation that has been
developed and implemented as well [2] might be an interesting option for further cost
reduction.

The convergence properties of the solutions for increasing spatial resolution, as measured
by the number of radial and poloidal nodes indicated by n = nr = n p, is demonstrated in
Fig. 6. For both a slow (Case T3) and a fast (Case T4) solution, we confirm the expected
quartic convergence behavior through the use of bicubic Hermite finite elements. This is
done as follows. To quantify the order of the discretization error in � , we use the eigenvalue
A appearing in the equilibrium calculation of geometries with nested closed flux surfaces.
Assuming An = A∞ + Cn−
 , with n the number of radial and poloidal nodes and A∞ the
exact value, the convergence rate 
 can easily be obtained by plotting d An/dn versus n in
a log–log plot. This is shown in the left panel of Fig. 6 for Case T3. From this figure it
follows that 
 = 4. Hence, we find the same quartic convergence as in the bicubic finite
element methods exploited to solve static equilibria [1, 12]. In Fig. 6, we have also plotted
the convergence of ∂2�/∂x2 on the magnetic axis. Its convergence rate is cubic. In the
right panel of Fig. 6, we plot the deviation An − A101 for several runs of the fast-flow
Case T4, again clearly showing quartic convergence. For completeness, Table I indicates
CPU timing results for several spatial resolutions. From Figs. 4–6 and Table I, we conclude
that our solution method delivers very accurate stationary MHD equilibria within seconds
to several minutes.

4. TYPICAL SOLUTIONS

In this section we show several equilibrium solutions, as computed by FINESSE, for dif-
ferent geometries and different flow regimes. The magnetic configurations include tokamak-
relevant geometries with nested, closed flux surfaces, as well as astrophysical applications
with nested and open flux surfaces. First, we give five examples with nested flux surfaces,
with plasma flows ranging from subslow, to slow, to fast regimes, without and with external
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TABLE II

Specification of the Input Amplitudes and Unit Profiles for All Equilibria

Case Aa, �1 A2, �2 A3, �3 A4, �4 A5, �5

T1—subslow 8.26 × 10−4 0.002 4 × 10−4 3400 0

 = 0.05 1 − 1.8� + 0.9� 2 1 − 1.9� + 0.95� 2 1 1 1 − 0.95�

T2—slow 0.142 0.001 1 × 10−4 500 0

 = 0.05 1 − 0.4� + 0.2� 2 1 − 1.6� + 0.8� 2 1 1 1 − 0.95�

T3—slow 1.03 0.1 5 × 10−9 350 0

 = 0.3 1 − 1.8� + 0.9� 2 1 − 1.8� + 0.9� 2 1 1 1 − 0.95� 2

T4—fast 84.5 0.1 5 × 10−9 1750 0

 = 0.3 1 1 − 1.8� + 0.9� 2 1 1 1 − 0.95� 2

AD—slow 0.267 0.001 1 × 10−4 500 1

 = 0.05 1 − 0.4� + 0.2� 2 1 − 1.6� + 0.8� 2 1 1 1 − 0.49� 2

SB—subslow 5 × 10−8 0.1 1 × 10−7 106 1
a/b = 0.2 1 1 1 � 1

a Output value for the nested geometries.

gravitational field, for either circular or disklike cross sections. Our final example repre-
sents a stellar breeze for an annular cross-section geometry where gravity plays a role.
These solutions have been obtained for specific choices for amplitudes Ai and unit profiles
�i , as listed in Table II. In the Appendix, we relate these choices with physically relevant
parameters. If not stated otherwise, the ratio of specific heats � = 5/3.

4.1. Nested Magnetic Configurations

4.1.1. Tokamak Plasmas: Near-Static Flow Equilibrium

Our first example is a subslow equilibrium for a tokamak (T1) with a circular cross
section, where the inverse aspect ratio is 
 = 0.05. Figure 7 shows the computed equilibrium
as contour plots of the squared poloidal Alfvén Mach number M2, the density � , the toroidal
magnetic field component B� , the ratio M2/M2

c with M2
c = � p/(� p + B2), the pressure

p, and the toroidal velocity component v� . All contour plots are superposed on a straight
field line coordinate grid (� , �) where � is a poloidal angle constructed in such a way that
the equilibrium magnetic field is straight on each magnetic surface, (d�/d�)fieldline = B ·
∇�/B · ∇� = J B�/R = q(�), where J is the Jacobian of the (� , �,�) coordinate system,
and q denotes the safety factor. This coordinate transformation involves computing the
inverse solution, x(� , �), y(� , �), as well as constructing the straight field line coordinate �.
This is done via exact root finding and interpolation of the finite element solution � . The use
of these straight field line coordinates (� , �) is only needed for subsequent spectral studies,
where a proper representation of dynamics perpendicular and parallel to the magnetic field
is crucial.

As can be seen from Fig. 7 M2 � 1 and M2 < M2
c , so the equilibrium is a near-static,

subslow elliptic flow equilibrium far away from the transition to hyperbolic flow. Since it is
near-static, the pressure is roughly a flux function p ∼ p(� ) (recall that for static equilibria
p = p(�)). The q(�) profile, shown in Fig. 8, reveals that this equilibrium is representative
for a realistic flowing tokamak plasma: q(� = 0) � 1 with an increase toward the edge.
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FIG. 7. The subslow-flow tokamak equilibrium T1. The plots from left to right and from top to bottom show,
respectively, the squared poloidal Alfvén Mach number M2, the density � , the toroidal magnetic field component
B� , the ratio M2/M2

c , the pressure p, and the toroidal velocity component v� . The dotted lines correspond to a
straight field line (� , �)-coordinate grid.

The plasma beta is � ≡ 2〈p〉/(B2
�|� =0) = 9.63 × 10−4. With � ∼ O(
2), this tokamak

equilibrium is low beta. The toroidal field component has a clear 1/R dependence, making
R B� nearly a flux function, which holds exactly in the static case. Since gravity is absent,
we can freely prescribe the flux dependence of � ′2. The density plot from Fig. 7 assumed
� ′2 = 1 − 0.95� .

For this near-static equilibrium, it can be seen from the figure that M2 behaves almost
like a flux function. In the Appendix, we explain why this behavior applies to all near-static
equilibria. The velocity field v can generally be written as

v = M√
�

B + �Re�, (39)

which decomposes the flow into a part parallel to the magnetic field and a nonparallel part of
the toroidal velocity. For the near-static M2 � 1 case, the toroidal velocity v� is essentially
given by �R. From the figure, we conclude that � ∼ O(
2), which is a familiar result for
a low-beta tokamak plasma [11].
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FIG. 8. The q-profiles for the tokamak-relevant equilibria T1 (left) and T2 (right).

4.1.2. Tokamak Plasmas: Slow Flow Equilibrium

We now present equilibrium T2, where the flow is completely in the slow elliptic regime
(Fig. 9), for the same geometry as in the first example. This is a slow-flow solution, as can
be seen immediately from the extremal values of M2 and M2/M2

c reported on the plots:

FIG. 9. As in Fig. 7, the slow-flow tokamak equilibrium T2.
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M2
c < M2 < 1. An important notable difference from the subslow tokamak equilibrium

presented in the previous example is that M2 is clearly not a flux function anymore. Notice
the outward shift of the contour lines of M2 with respect to the flux coordinate grid. This
equilibrium still has a fusion-relevant q-profile (Fig. 8) and the familiar ∼ 1/R variation
in B� . However, with a plasma beta value of � = 4.06 × 10−5 the equilibrium is more
a balance between the Lorentz and the centrifugal force in the poloidal cross section.
The nonnegligible flow causes noticeable misalignment between the contour lines of p
and the flux surfaces. Again, as in the first example, the density is computed based on a
chosen � ′2 = 1 − 0.95� . The difference between this slow equilibrium and the subslow
equilibrium in the previous example clearly manifests itself in the toroidal velocity v�: it is
two orders of magnitude larger for this equilibrium and it varies more significantly (notice
the difference in max v�/ min v�).

Using the straight field line representation of the obtained slow-flow equilibrium (shown
as the dotted lines in Fig. 9), we now demonstrate that the obtained accuracy in the equi-
librium solution is clearly sufficient to calculate the entire ideal continuous spectrum of all
MHD waves and instabilities localized to individual flux surfaces. Using the companion
spectral code PHOENIX [3] we solve the linearized ideal MHD equations, from which
we obtain a spectrum of (complex) eigenvalues �. When the ideal continuous spectrum is
calculated, the variation of the normal modes with time dependence e�t in the direction
across the flux surfaces is known a priori and prescribed in PHOENIX. Since the equilib-
rium is axisymmetric, a single toroidal Fourier mode ein� can be selected. For the analysis
of the modes localized on single flux surfaces, labeled by s ≡ √

� , the poloidal variation
is represented as a truncated Fourier series

∑
eim�. The result of such an analysis for

n = −1, and m values ranging from −6 to 2, is plotted in Fig. 10. The influence of the
FINESSE grid resolution on the eigenmodes calculated by PHOENIX is also shown. For
each resolution, we interpolated the equilibrium solution to a straight field line coordinate
grid of size 129 × 129. A rigorous analysis of all occurring wave modes and the numerous
mode couplings visible as either avoided crossings or mergers of normal mode branches
is presented elsewhere. Due to the presence of flow in the tokamak equilibrium, it turns
out that for each poloidal m mode, a quintet of branches can be identified corresponding
to flow-advected entropy disturbances and two pairs of forward- and backward-traveling
singular wave modes, namely a slow and an Alfvén wave pair.

4.1.3. Plasmas with Large Poloidal Flow

The tokamak-relevant examples given above had low poloidal Alfvén Mach numbers
M , with values ranging up to 0.01 for the near-static (subslow) Case T1 and up to 0.1
for the slow Case T2. However, FINESSE can also calculate stationary plasma states
with significant background flow M ∼ O(1), and this is shown in the following two
examples. For the sake of comparison, we keep the circular shape of the toroidal cross
section. The effect of toroidicity is amplified by raising the aspect ratio by a factor of 6 to

 = 0.3.

Slow-flow equilibrium. As in the tokamak Case T2 from Fig. 9, the equilibrium T3 in
Fig. 11 is still a slow elliptic flow equilibrium. The increased aspect ratio causes a marked
outward shift of the flux surfaces, as a combined effect of toroidicity (Shafranov shift) and
centrifugal forces. This equilibrium has a predominantly poloidal magnetic field, with a
corresponding q-profile which would increase from 0.03 on the magnetic axis to 0.1 at
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FIG. 10. An examplary spectral analysis of the slow-flow equilibrium shown in Fig. 9. (Top) The oscillation
frequencies Im� of the ideal MHD eigenmodes localized to individual flux surfaces labeled s = √

� trace out
quintets of normal mode branches for each poloidal mode number m. Avoided crossings (e.g., creating the gap
bordered by modes labeled A and B) and mergers of these curves signal intricate poloidal mode couplings. (Bottom)
The convergence of the individual eigenfrequencies A (left) and B (right) as a function of the equilibrium resolution.

the edge. Notice the major difference in the toroidal field component with respect to the
T2 equilibrium: the ∼ 1/R dependence has now disappeared. Also, the toroidal velocity
v� varies yet more significantly, having a pronounced local minimum at an intermediate
flux surface. A high plasma beta value, � = 0.0201, for this equilibrium suggests larger,
compared to the T2 equilibrium, values of M2

c ≈ 1
2 ��. This is indeed the case, as can be

seen from the M2/M2
c values.

Fast-flow equilibrium. In Fig. 12, a fast elliptic flow equilibrium T4 is presented. A
strong toroidal flow, i.e., large values of v� , leads to an equilibrium that has almost nothing
in common with tokamaklike equilibria T1 and T2. This is a high-beta configuration:
� = 0.0139. Compared to the T3 equilibrium, there is a yet stronger centrifugally driven
displacement of the flux surfaces: notice the significant outward shift of the magnetic axis.
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FIG. 11. As in Figs. 7 and 9, for the slow elliptic T3 equilibrium.

The density distribution is even more shifted toward the outer edge, which is mimicked by
the pressure variation in such a way that the entropy ends up in accord with its prescribed
flux dependence.

4.1.4. Flux Tori in Accretion Disks

The previous examples did not include the influence of gravity. As an idealized model for
a magnetized accretion disk (or a flux loop in such a disk) about a compact stellar object,
we now calculate a slow elliptic flow solution (AD in Table II) in a flattened disk. The
disk geometry is assumed to be top-down symmetric and has an aspect ratio of 
 = 0.05
with an ellipticity of E = 0.5. The solution is shown in Fig. 13. The gravitational point
source, to the left of the plots, clearly influences the density distribution in the disk, whose
maximum is displaced inward with respect to the magnetic axis. Compared to the slow
equilibrium T2, where centrifugal and magnetic forces were dominant (negligible thermal
pressure effects), this configuration is now a careful balance between the central inward
gravitational force and centrifugal and magnetic forces. Indeed, the toroidal velocity turns
out to be roughly twice the local Keplerian velocity, while the plasma � is 2.7 × 10−5.
The strength of the gravitational field as characterized by the ratio of the escape speed
vesc = √

2G Mgrav/R to the local adiabatic sound speed cs = √
� p/� is about 13 at the

magnetic axis and reaches up to 22 at both edges of the disk. As the spectral companion code
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FIG. 12. As in Figs. 7, 9, and 11, for the fast elliptic T4 equilibrium.

FIG. 13. The accretion disk equilibrium in the same format as Figs. 7, 9, 11, and 12.
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PHOENIX can also handle external gravitational fields, we intend to analyze the stability
properties of flux tori in accretion disks starting from similar stationary, gravitationally
stratified MHD equilibria [4, 8].

4.2. An Open Magnetic Configuration: The Stellar Breeze

Our final astrophysically relevant case considers a stellar wind in a dipolar coronal
magnetic field. Specifically, we present a top-down symmetric (w.r.t. the equator) solution
around a gravitating star modeled as a subslow elliptic flow equilibrium (SB in Table II)
in a spherical annulus geometry. The solution is shown in Fig. 14 and is computed on a
81 × 81 finite element grid.

The domain we consider extends to five stellar radii (b/a = 5 in Eqs. (14) and (15)). On
the stellar surface we impose the boundary condition � = cos2 � to get a dipolar magnetic
field solution, as seen in the magnetic flux contours in Fig. 14. On the outer radial boundary
of the domain we impose the condition that the magnetic field is normal to the boundary.

FIG. 14. The stellar breeze equilibrium. (Top left) The squared poloidal Alfvén Mach number M2 and the
poloidal stream function � (dotted lines). (Top right) The pressure p superimposed on � . (Bottom left) The
poloidal flow pattern in the stellar corona. (Bottom right) The Mach number vp/cs with cs = √

� p/� .
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Symmetry requirements dictate the other boundary conditions: on the symmetry axis the
poloidal magnetic flux is constant and � = 0 is imposed, while top-down symmetry requires
the magnetic field to be normal to the equator.

Regularity on the symmetry axis demands that B� and v� vanish on this axis. This
is achieved by setting �4 = � . The other profiles are taken to be constant: �i = 1, i =
1, 2, 3, 5. Hence, we calculate an equilibrium where the entropy is a constant globally.
Furthermore, the ratio of specific heats � = 1.2.

Since the profiles �1,2,3 are all constant and equal to one and A3 � 1 (see Table II),
the Bernoulli variable P only depends on r = √

R2 + Z2 via the gravitational potential.
Consequently, M2 should only depend on r since for near-static (subslow) equilibria there is
a direct relation between P and the poloidal Alfvén Mach number M2 (see the Appendix).
As a result, the poloidal Alfvén Mach number is far from being a flux function. Similarly,
pressure and density decrease radially outward in accord with the gravitational stratification.
This is clearly seen in Fig. 14. The strength of the gravitational field can again be quantified
by the dimensionless ratio vesc/cs = 2.236 at the stellar surface. Since the outward pressure
gradient force is insufficient to accelerate the coronal plasma to supersonic speeds (bottom
panels of Fig. 14), the obtained solution can be referred to as a stellar “breeze.” It will be of
interest to explore parameter regimes expected to result in transonic wind solutions, where
FINESSE calculations of the elliptic flow regions can be used to accelerate the solution
procedure for obtaining such transonic stationary states [14].

5. CONCLUSIONS

We have presented a new code, FINESSE, for computing stationary axisymmetric MHD
equilibria. The presence of flow leads to serious complications in computing equilibria,
which in our paper are overcome by reducing the original ideal stationary MHD equations
to a compact elegant form. The reduced set of two nonlinear equations, of which one is
algebraic and the other is a PDE, is solved accurately by a simple, fast, and effective iterative
scheme. The chosen approach allows us to deal with a large variety of fusion and astrophys-
ically relevant plasmas, as demonstrated in the numerical examples. Equilibria delivered by
FINESSE are extremely accurate, so that they can readily be used for subsequent spectral
analysis.

APPENDIX

The solution procedure to obtain stationary MHD equilibria followed in FINESSE trans-
lates the freedom in the five flux functions into problem-specific choices for the unit profiles
�i and their (relative) amplitudes Ai . Input values for the amplitudes implicitly prescribe
some basic physical parameters for the calculated equilibria. As an example, we illustrate
this for a general subslow (near-static) equilibrium. Similar arguments can be used to relate
values for Ai to physical quantities for slow and fast elliptic solutions.

In a near-static case, we have M2 � 1 and M2/M2
c � 1. Under these conditions, the

variable P , as appearing in the Bernoulli equation (32), is directly related to the magnitude
of the poloidal Alfvén Mach number:

lim
M2/M2

c →0

P

M2(�−1)
= 1. (40)
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When we take a small value for A3 � 1, we can approximate P ≈ A2�2(�)/�1(�) and thus
use the input value for A2 to set the magnitude of M2 directly (which must be consistent
with M2 � 1). As a general result, we can conclude from Eq. (40) that M2 is nearly a flux
function in the limit of negligible poloidal flow.

In combination with the condition M2 � 1, the condition A3 � 1 is equivalent to saying
that the nonparallel (to the magnetic field) part of the toroidal velocity component is much
smaller than the sound speed. Since the nonparallel toroidal velocity is R�, this statement
is confirmed by the observation

lim
M2→0

1

2
(� − 1)

R2�2

c2
s

= R2�3


1
= (1 + 
x)2 A3�3(�)

�1(�) + (1 + 
x)2 A3�3(�)
≤ 1, (41)

where cs ≡ √
� p/� is the adiabatic sound speed.

The last deterministic input variable is A4, and we now demonstrate how its value—for
preselected A2 and A3—determines the toroidal plasma beta �t ≡ 2p/B2

� . Indeed, in the
no-poloidal flow limit, the variable Q appearing in the Bernoulli Eq. (32) is directly related
to the magnitude of the poloidal Alfvén Mach number and the toroidal plasma beta, viz.,

lim
M2/M2

c →0
QM2 = � − 1

�

1

�t
. (42)

Therefore, provided A4/
 � 1, the toroidal plasma beta is a flux function to lowest order
in the inverse aspect ratio 
:

lim

→0

�t


2
= � − 1

�

�
�/(�−1)
1

A1/(�−1)
2 A3 A2

4�
1/(�−1)
2 �3�2

4

. (43)

With amplitudes A2 and A3 given, this relates the magnitude of �t to amplitude A4.
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